

ema Education

virtuelle Planung, Gestaltung und Optimierung von Arbeitssystemen, -prozessen und Produkten in der Lehre

imk automotive GmbH – mehr als nur ein Softwarehersteller

II ema Work Designer – virtuelle Planung, Gestaltung und Optimierung

II ema in der Lehre – Konzept, Szenarien und Unterlagen

imk - Geschäftsfelder, Standorte & Kunden

Branchenübergreifende Beratungs- und Ingenieurdienstleistungen

Produktentwicklung

Dr. Jens Trepte

- Antriebslösungen
- Struktur- und Materialdesign
- Multiphysikalische Simulation
- Finite Elemente
 Beratung und Training

Fertigungsprozessentwicklung

Carsten Otto

- Fertigungs- und Montageplanung
- Fabrik- und Logistikplanung
- Digitale Produktionsplanung
- Produkt- und Produktionsoptimierung

Informationstechnologie

Dr. Sebastian Bauer

- SoftwareentwicklungSupport und Service
 - ema 🗸 imk

ema C imk

Ergonomie

Prof. Dr. Lars Fritzsche

- Ergonomische Arbeitsgestaltung und Arbeitsorganisation
- Ergonomieanalyse und Risikobewertung
- Virtuelle Ergonomie
- Beratung und Training

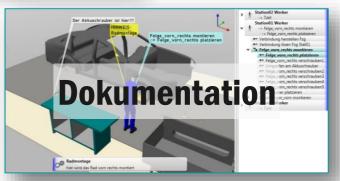
Über 1.600 Projekte bei mehr als 150 Kunden aus Automobilindustrie, Anlagen- und Maschinenbau, Luft- und Raumfahrt, Bildung, Wissenschaft in 13 Ländern und über 95 % Kundenzufriedenheit.



imk automotive GmbH – mehr als nur ein Softwarehersteller

II ema Work Designer – virtuelle Planung, Gestaltung und Optimierung

III ema in der Lehre – Konzept, Szenarien und Unterlagen



ema Work Designer - virtuelle Planung, Gestaltung und Optimierung von Arbeitsprozessen und Produkten

ema ist ein umfassendes Simulationstool zur **prospektiven Planung, Gestaltung und Optimierung** menschlicher Arbeit im industriellen Fertigungsprozess.

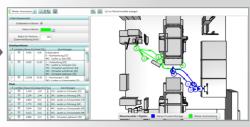
ema ermöglicht eine **schnelle und effiziente Visualisierung** von Arbeitsplätzen bis zu Fertigungslinien und Fabriken.

- ema erzeugt autonom eine valide und humanorientierte Arbeitsprozesssimulation anhand Verrichtungen unter Berücksichtigung von Prozess- und Ergonomievorgaben
- ema bietet eine umfangreiche Ressourcenbibliothek (Mensch, Roboter, Objekte, Werkzeuge uvm.) sowie die Möglichkeit verschiedenste CAD-Daten zu laden
- ema bietet nutzerorientierte Auswertungen zur ergonomischen und wirtschaftlichen Gestaltung:
 - → Fertigungszeit (MTM-UAS) sowie Wertschöpfungsanteil
 - ➡ Ergonomie (z.B. EAWS, Erreich- und Sichtbarkeitsanalysen)
 - → Spaghetti-Diagramm (Laufwegoptimierung)
 - **→** Taktzeit-Diagramme
 - Auswertungen zur Mensch-Roboter-Interaktion

Zeitwirtschaftliche Analyse (MTM)

*Algeres		VenisMangen					SIAS Analyse										
School an Kits-Spetter Stat	13.0	399	30 Sestine		Atomisionen C) - Devegungstinge (nie	- Digelithersthebung		•	Scottmang	Kock	Hand	DAV	Axe	TANK.	DA2	Geuer	28
Atelojes	Dispetitel Eastracture e		y Drid autophoses		Hand (n) 0,60 - Strongungslange sente Hand (n) 0,61 - Last in beider Händen	'UHU Frantend' & Frontend Ember' bedhändig aufgenommen	116	1	Interactionsgrandoor gang	AHE	1.08	25.0	111	21.0	00.	253	ai
Anwendung der hohen LLL Methodeneliveauteneichs							Ш		Aufsehmen &	ALS.	Lan	1150		1130	0.0	1250	A
Verseradote Oblebbe				Ή				- 7	Principle	160		55.6	1-1	0.2	55.6	55.6	12
D (New Male) (New Mode) (New Mode				-1	or fall day Autonomore.		HΠ		Kirpehevepung	:KA:		250	15.55	250	60	252	
	-		_	-1:	F = Severy registrop into limit (n) 4.50 • Severy registrop suche Varid (n) 0.22 • Severy registrop Digat (n) 0.29 • Lad (n) beaden variable (n) 1.50 • All des Retzerne	'CHA Fromend & Trocherd School Sch	Haz.		ri (famittel handhaben	1932		43.0		45.0	0.0	45.0	
			DHM	-11			416		Settingen	942		42.0	12.74	400	0.0	40.0	
				-			III.		Körperbewegung	(A			1.2				L
		Obsessed					14		Saucer	PCL	-	33.0	13.00	350	04:	302	ы
		N Ziel	13 postoni						Platzieren	PAZ EE	- 11	22.0		20.0	0.0		13
		Beveget		4			1144		Printerior.		-	55.0	1.01	0.0	55.4	55.4	13
				-			1114		Petreen	841		33.0		20.0	0.0	103	
				-			1134		Körperbenegung	- KA		25.0	172	750	00	754	13
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	۹,			1114		Platform	PCI	_	33.0		30.0		203	
		Victorian	LHM	- 3"	*	Southert Total			Ceteman	MI	228	280	JACK.	02	00	.805.	2
	ш э	g Street	* Justesser	1		bed havin natived			Prozestant Contenso			33.6				55-6	
	100		- Leufen s		- Laufring (m) 5:90 - Laufring upwaits		11)4			PAL		13.0	111	200	0.0	102	
		Laufen	40 Sotrieutoer				1114		Kiryerkenegung	EA.	_	250		250	0.0		à
		Chjeksel puhushma	30 Schreide aufricker	. [Severyungslange mobile Havel (m) 0.75 Last in rechter Fland (leg) 2.00 Fall des Auftrehmens mobil definiers	* Altouchreater 2 mit rechter Hand gufgerommen		-	Körperhenegung			230	111	1.20	00	438	.0

Virtuelle Prozessplanung & Training


Ergonomische Arbeitsgestaltung für MA mit Tätigkeitseinschränkung

Ergonomiebewertung (EAWS)

Analog Parameter	Versichtungen	Kirperheltungen	Körperhaltungsblöcke	Summe Ganzkärper:	
Testret to a mi	per (0) (D) Seneroung (P Design	1/4	Summe Ganzkorper:	200
Tetret 50 (m)	L464 7L Footant Patrices	62 000 -2.8 m	Oberboijer aufwirte (19sa)	16 Sussess Kirpenhaltung	
Arbeitseit (d.) 13.93	445 38 Frontend Sefectigung	63 000 -28 1/54 000 -28	Davidger aufwirt nit selduter hier	18e Heltung Überkörper	0
Takks pro School (R) 520		85 029 -28	Disektoper autwork (Stak)	18s Arreletung	. 0
Takke pro Schicks (R) 528		66 040 -28	1 Oberhörger aufwohlt mit selfscher Neid m.	18: Bentaltung	0
flettoeteetcert (ren/ 4g)		67 040 -28		17 Summer Etypodealte	65
School		68 000 -28	North Falls	17a Ganzkörper, Armániñas	41
Statischer Stehen IIII		89 020 -28	f Type	17s Handoelenfabelestungen	
		75 0.60 -2.8	1 *I million dem Carolonyelistic C C	17s Engelsofte	
informationes for Sesukt	-	72 000 -28	2 T redter Arm-Gastiorpensite (C	13 Summe Lieterhandhabung	
		72 000 -28	2 *1 mittee Arm-Kanskingeringte C	23a Umsetzen, Hallen, Yragen	
		73 020 -28	4 *1 mittes Arm-Gendingeholte GEN	13h Schieben / Zarbery	-
		34 0.40 -2.6	0 0		
		75 000 -28	Last fills		
		76 000 -28	* Last (log) Typ Chart		
		77 0.00 -2.6	# 20 - Umsetzen (Litel) 0.00(III)		
		79 040 -28	8 20 of America (Chall O.K		
		190 000 -28			
		41 000 -28	10 20 14 (morton (324) 267		
		82 000 -28 th			
		(B)			

Optimierung & Produktivität

Planung & Absicherung von Mensch-Roboter-Kollaboration (MRK)

Wer setzt ema für was ein? - Industriekunden und typische Anwendungen

Typische Anwendungen

Virtuelle Produkt- und Prozessworkshops

Planung/Umgestaltung spezieller Arbeitsbereiche für Mitarbeiter z.B. mit Tätigkeitseinschränkung

Virtuelle Inbetriebnahme von Produktionsanlagen & MRK-Systeme

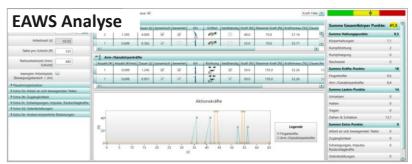
Durchführung von KVP-Workshops: Erarbeitung, Bewertung und Visualisierung von Maßnahmen

Integration von Motion Capturing Daten in die Prozessbewertung und -gestaltung

imk automotive GmbH – mehr als nur ein Softwarehersteller

II ema Work Designer – virtuelle Planung, Gestaltung und Optimierung

ema in der Lehre – Konzept, Szenarien und Unterlagen


*Die Education Edition ist nur für nicht kommerzielle Nutzung durch Hochschulen/Universitäten zugelassen.

ema Education* – ermöglicht die umfassende Nutzung aller ema-Funktionen

- Genormte Menschmodelle mit diversen Charakteristiken (z.B. Geschlecht, Körpermaßen)
- Umfangreiche Verrichtungsbibliothek zur Modellierung des Arbeitsablaufs (Aufnehmen, Platzieren, Werkzeug benutzen, Komplexverrichtungen etc.)
- Umfangreiche Objektbibliothek für benutzerdefinierte Geometrien, Layouts und Produkte (Roboter, Werkzeuge, Behälter etc.)
- Importschnittstellen für Layout (*dxf, *tga, *jpg, *png), Produkt und sonstige CAD-Daten (*dae, *jt, *obj, *wrml) sowie Arbeitsprozessbeschreibungen (*csv)
- Effektive Auswertung der simulierten Arbeitsprozesse nach Produktivität und Ergonomie zur Ableitung von Gestaltungsmaßnahmen anhand standardisierter und anerkannter Auswertungsmethoden (u.a. EAWS, Sicht- und Erreichbarkeitsanalyse, MTM-UAS, Wertschöpfung, Taktzeit- und Spaghettidiagramm)
- Gestaltung und Untersuchung von Mensch-Roboter-Interaktionen inkl. MRK-Auswertung bzgl.
 Kollisionskräften, Interaktionsbereichen und Merkmalen der Interaktionspartner
- Dynamische Arbeitsplatzsimulation für Montagelinien, Objekt- & Roboterbewegungen (z.B. mittels Definition kinematischer Ketten, Import von Roboterbewegungsdaten etc.)
- Import von Bewegungsdaten (MoCap) aus beliebigen Erfassungssystemen (u.a. ART, Xsens) und Auswertung mittels EAWS Analyse inkl. Kräfte und Gewichte
- Integrierte Kollisionserkennung und -vermeidung für Wegfindung und Objekthandhabung
- Umfangreiche Dokumentations- und Instruktionsfunktionen: Video-/Bildexport, Reports, etc.

Benutzeroberfläche zur Erstellung, Gestaltung und Visualisierung

Ergonomische Auswertung beispielsweise mittels biomechanischer Analyse auf Basis von EAWS (Ergonomic Assessment Worksheet)

April 2020 www.imk-automotive.de Folie: 10

ema Education - Digitalisierung der Lehre

Welche Vorteile bietet Ihnen der Einsatz von ema in der Lehre?

- ema macht gestalterische Maßnahmen sichtbar, bewertbar und diskutierbar
- Anschauliche Vermittlung der Grundlagen von Industrie 4.0 / Ergonomie 4.0 mit den Themen Digitale Fabrik, Virtuelle Ergonomie, Mensch-Roboter-Interaktion, Assistenzsysteme etc.
- Einfache, intuitive Bedienung ermöglicht schnelles Erlernen der Software
- Direkte, interaktive Einbindung der Studierenden in den Lernprozess mit Spaßfaktor
- Einsatz in Einzelarbeiten, Gruppenarbeiten, Selbstlernphasen u.a.

Welche Besonderheiten beinhaltet die ema Education Edition?

- Unbegrenzte Anzahl an ortsunabhängigen Lizenzen für Lehrende und Lernende ermöglicht individuellen Einsatz von ema
- Modulares Lehrkonzept zum Einsatz von ema inkl. Bereitstellung von praxisbezogenen Videos, Lehrunterlagen und ema-Szenarien
- Kundenspezifische Schulungen und Anpassungen der Unterlagen möglich (z.B. abhängig vom Studiengang)
- Bereitstellung von Austauschmöglichkeiten für Universitäten und Hochschulen (z.B. ema-Anwenderkonferenz IIC)
- Regelmäßige Webinare zum Einsatz von ema

ema Education – modulares Lehrkonzept

Stufen	Inhalt / Unterstützung
Stufe 1	Bereitstellung von praxisbezogenen ema-Videos zu Themen wie Arbeitsplatz-, Arbeitsprozess-, Mensch-Roboter-Interaktion, Zeit- und Ergonomiebewertung etc. [zur punktuellen Verwendung in Lehrveranstaltungen]
Stufe 2	Vermittlung der Grundfunktionen von digitalen Menschmodellen & virtueller Arbeitsgestaltung mittels ema Work Designer (Grundlagen + Kurzeinführung ema) [90 minütige Vorlesung / Übung]
Stufe 3	Vermittlung detaillierter Kenntnisse zu digitalen Menschmodellen & virtueller Arbeitsgestaltung mittels ema Work Designer mit bis zu 6 Lehreinheiten [6 x 90 Minuten / 120 Minuten]
Stufe 4	ema-Schulung (ema for students) durch ema Instruktor an Hochschule inkl. Zertifikat [3 Tage] (Preise pro Teilnehmer auf Anfrage)

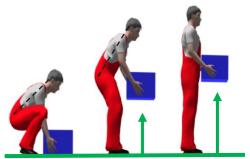
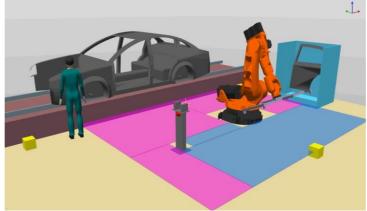
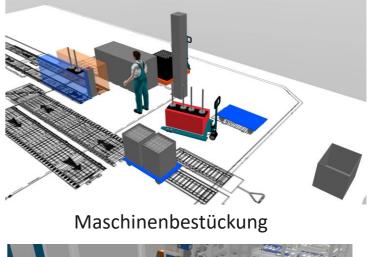


Illustration bspw. für ergonomisches Heben von Lasten


ema Schulung an Hochschulen durch ema Instruktoren

ema Education - Stufe 1: ema-Videos zur Veranschaulichung von Themen

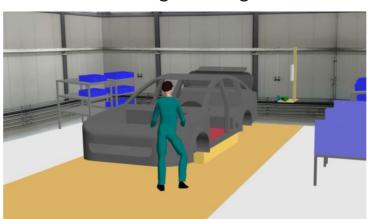
Anthropometrische Arbeitsgestaltung


Mensch-Roboter-Interaktion

Logistik - Kommissionierung

Fahrzeugendmontage

Warenkorb


ema Education - Stufe 1: ema-Videos zur Veranschaulichung von Themen

Bürogestaltung

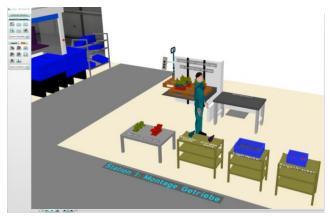
Integration von Motion Capturing

Gestaltung von Pflegetätigkeiten

Optimierung Materialbereitstellung

ema Education - Stufe 2 / 3: ema-Szenario und Lehrunterlagen

Konzept:


- Lerninhalte und -umfang individuell anpassbar je nach Stundenumfang und Lerninhalt der Vorlesung / Übung(sreihe)
- Bereitstellung von Lehrunterlagen sowie ema-Arbeitsszenario inkl. Zwischenständen

Lerninhalte:

- Einheit 1: Grundlagen zu DMM und ema Work Designer inkl. Praxisbeispielen
- Einheit 2: Erstellung des Arbeitsprozesses, Umgang mit Objektdaten
- Einheit 3: Erstellung notwendiger Verrichtungen, Gesamtszenario
- Einheit 4.1: Analyse und Optimierung des Arbeitsprozesses nach Ergonomie
- Einheit 4.2: Analyse und Optimierung des Arbeitsprozesses nach Produktivität / Produktionszeiten
- Einheit 5: Planung und Bewertung von Mensch-Roboter-Interaktionen
- Einheit 6: Planung und Bewertung von Mensch-Maschine-Interaktion am Beispiel des Einsatzes von Manipulatoren

Zusatzangebot:

- Kundenspezifische Schulung zum Einsatz des ema-Szenarios und der Lehrunterlagen
- bei Bedarf individuelle Anpassung und Betreuung möglich

Ist-Prozess Getriebemontage (Ergebnis Einheit 3)

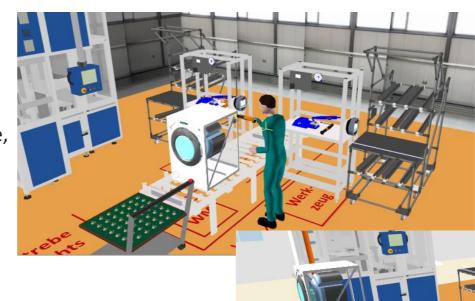
MRK-Prozess Getriebemontage (Ergebnis Einheit 5)

April 2020 www.imk-automotive.de Folie: 15

Simulation, Bewertung und Gestaltung logistischer Prozessen

Schwerpunkte der Betrachtung:

- Ergonomische Arbeitsprozessgestaltung (Laufwege, Prozessschritte etc.)
- Materialanordnung und Gestaltung von Behältern (GLT, KLT, Regalen etc.)
- Sicht- und Erreichbarkeiten unterschiedlicher Anthropometrie (kleine Frau bis großen Mann)
- Zeitwirtschaftliche Prozessgestaltung (UAS-Zeitanalyse, Laufwegeanalyse etc.)
- Weiteres


Teilaspekte können auch in Hausarbeiten erstellt und dann zu einem Gesamtprojekt zusammengefügt werden.

Gestaltung einer Waschmaschinenmontage

Schwerpunkte der Betrachtung:

- Ergonomische Arbeitsprozessgestaltung (Laufwege, Prozessschritte etc.)
- Ergonomische Produktgestaltung (Anzeigen, Stellteile, Zugänglichkeit etc.)
- Materialanordnung und -transport (Förderbänder, FLT-Systeme)
- Sicht- und Erreichbarkeiten unterschiedlicher Anthropometrie (kleine Frau bis großen Mann)
- Zeitwirtschaftliche Prozessgestaltung (UAS-Zeitanalyse, Laufwegeanalyse, Produktivität / Auslastungsgrad etc.)

Teilaspekte können auch in Hausarbeiten erstellt und dann zu einem Gesamtprojekt zusammengefügt werden.

Wer setzt ema in der Lehre & Forschung ein?

Typische Studiengänge

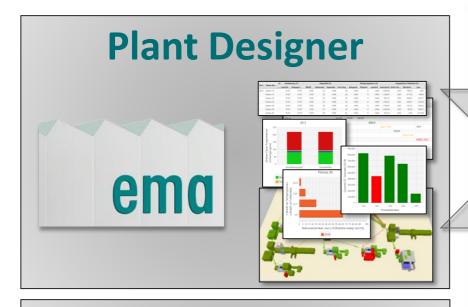
Digital Engineering Virtual Engineering

Arbeitssystemgestaltung

Arbeitswissenschaft **Human Factors**

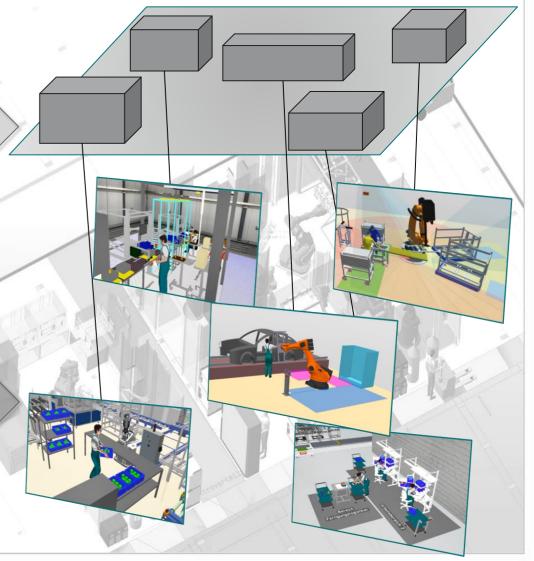
Arbeit und Gesundheit

Produktionssysteme **Fabrikbetrieb**

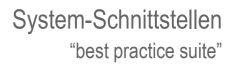

Industrial Engineering

Simulationstechnik in der Produktherstellung Betriebstechnik und Systemplanung

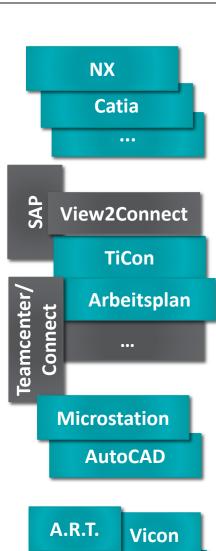
"best practice suite" – Zusammenwirken von ema WD und ema PD


Materialflüsse
Durchlaufzeiten
Herstellkosten
Ressourcen
Platzbedarf

Work Designer


3D-Layoutplanung
Arbeitsplatzdesign
Fertigungszeiten
Ergonomie
Visualisierung

ema Plant Designer - einfache, schnelle und präzise Produktions- und Materialflussplanung

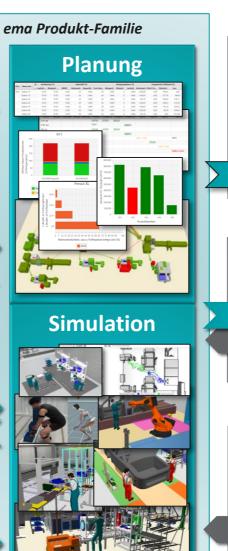


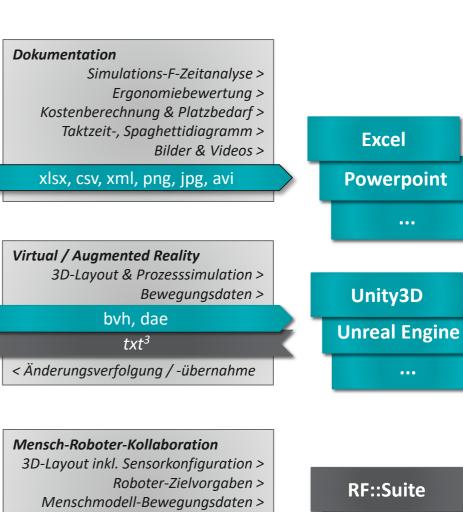
ROS

•••

Folie: 30






XSens

April 2020

AXS

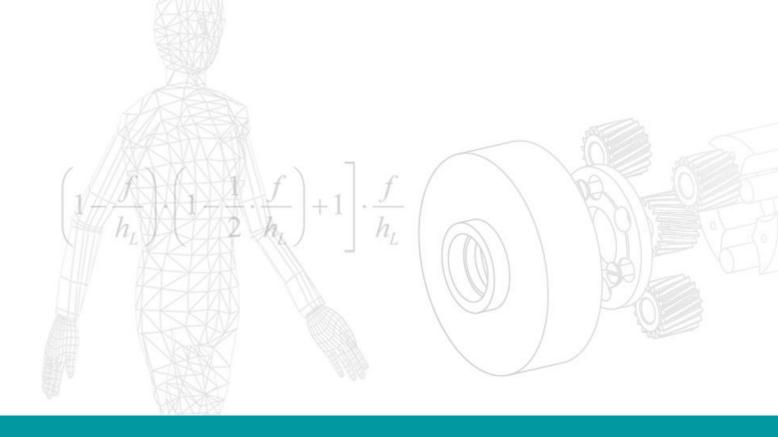
Integrationslösung (API)⁴

< Roboter-Bewegungsdaten

Welche Ziele verfolgen wir mit dem Konzept "ema Education"?

- Einsatz von modernen digitalen Werkzeugen in Lehre und Praxis fördern
- Unterstützung beim Einsatz von ema zur effizienten Anwendung in der Lehre

Welche Themen können mit ema behandelt werden?


- Ergonomie und Arbeitsplatzgestaltung
- Zeitwirtschaft und Prozessplanung/-optimierung
- Gestaltung der Mensch-Maschine-Schnittstelle, speziell Mensch-Roboter-Interaktion

Boden [4] Children: 1

Wie unterstützen wir Sie?

- Bereitstellung praxisbezogener Videos zu arbeitswissenschaftlichen Themen wie Ergonomie, Industrial Engineering / Fertigungszeiten, Mensch-Roboter-Interaktion, Prozessgestaltung, fähigkeitsgerechte Arbeitsgestaltung für Ältere und Leistungsgewandelte
- Bereitstellung von Lehrkonzepten zur Integration von ema in die Lehre inkl. didaktischen Konzepten, Anwendungsszenarien und Lehrmaterialien
- Bereitstellung von Austauschmöglichkeiten für Universitäten und Hochschulen (z.B. ema-Anwenderkonferenz IIC)
- Unterstützung bei der Erstellung von ema-Szenarien im Rahmen unseres ema-Support für Lehrende, Forschende und Studierende (Voraussetzung: aktueller Wartungsvertrag)
- Webinare zum Einsatz von ema
- Schulungsmöglichkeiten für ema-Anwender zum ema-Engineer und ema-Expert

Kontakt
Michael Spitzhirn
Fachreferent Virtuelle Ergonomiemethoden
Mobil: +49 (0)151 289 00 775
michael.spitzhirn@imk-automotive.de
www.imk-automotive.de